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2
A B S T R A C T

Interaction technologies for mobile devices became an important
research sector, over the past years. A great number of inspiring
work concerning different concepts and investigations about the
humans abilities to interact has been done. However commercial
mobile interfaces are still based upon input technologies, which have
been established for desktop scenarios. Pointing on touchscreens
and performing input on keyboards demand the user’s attention, yet
only represent secondary tasks in mobile scenarios. People being on
the go desire to fulfil a primary task, such as getting to the office or
relaxing in the park. Hence the Distraction caused by mobile devices
is unneeded and sometimes even dangerous. This thesis proposes
thumb on hand gestures for interacting with mobile devices. Our
concept address the following contradictory need. The user’s hand
should be exempted from a physical device. At the same time we
want to enable the user to have his device "at hand" at all times. We
present an optical detection system and the relevant mechanisms
to identify and analyse the user’s gesturing hand. Therefore our
solution facilitate the possibility to quickly interact with imaginary
input widgets in order to control mobile devices. Furthermore we
present different types of applications which are controlled by single
hand gestures and demonstrate the efficiency of our implemented
solution.
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3
I N T R O D U C T I O N

3.1 introduction

An increasing amount of human computer interaction research con-
centrates on various disciplines for mobile scenarios. This trend is
based on rapid and fundamental changes in this sector. Today’s
Smart-phones merge the functionality of a hand-held computer,
like managing calendars or browsing the internet into the classical
functions of a mobile telephone. This coalition requests an innova-
tive interaction-design that cant be adopted from stationary devices
and must be suitable for mobile scenarios. Low priority tasks like
checking mails on our mobile device shouldn’t distract us from our
primary tasks like crossing the streets or waiting for the bus. In order
to minimize this distraction, the interface needs to reduce the amount
of attention mobile devices command. A satisfying interface-concept,
which is suitable for mobile scenarios and actualizes the required
reduction, has not yet been implemented.

This thesis proposes thumb and hand interaction as input for
mobile devices. We present an optical solution illustrated in Figure
1, detecting single hand gestures. Our main focus is to implement
rich input options generated from the thumb interplaying with the
corresponding hand. We suggest gestures like pinching fingers or
moving the thumb across the palm as appropriate for quick interac-
tions in mobile scenarios and present the corresponding realization
techniques. Our design involves a chest mounted camera system,
enabling the detection and analyse of the users hand as it is held in
front of the body. The tracking of the thumb’s position and motion in
reference to the users empty hand enables the possibility to control
imaginary widgets like sliders,dials or buttons placed along our
Hand.
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3 introduction
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Figure 1: Thumb on hand interaction: The user interacts with the device
by performing single hand gestures in front of his body. We
implemented interactions like pinching individual fingers (a),
using the tip of the thumb in order to slide across the hand (b)
or using the index finger in order to rub along the thumb (c). A
chest mounted camera enables the possibility to detect the desired
gestures.

Our design directly address the individual factors, which deter-
mine the amount of attention that mobile devices command. The
amount of attention a device commands is aggregated by the time we
need to access the device,its usage time and the intensity of our atten-
tion we have to pay the device. Cui et al. published a study,finding
that 30 percent of men and 40 percent of woman miss calls on their
mobile phone simply because of the fact that they cant access their
phone fast enough. Having our input-space at hand at all time mini-
mizes the access time to our mobile device. The usage time typically
consists of a user navigating through a menu structure in order to
activate the desired procedure. Rich diversity of functionality offered
by temporary devices, restricts interaction minimization. However
the reduction of the timeslot for frequently appearing operations is
appropriate. Single purpose Gestures like pinching index finger for
switching to the next song in our play-list or simply sliding across
the palm for changing volume minimizes the usage time of our
device in many common cases. Smart phones, as they are typically
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3 introduction

equipped with a touch screen, don’t offer the possibility to interact
eyes free, since they provide no tactile feedback. This condition in-
creases the intensity of attention the device commands, because it
bends the users eye to the touch screen. The hand is very sensitive
to tactile feedback, as we are used to operate with it in order to feel
out, touch and hold objects. This feature can be used to create an
eyes free interaction and therefore reduce the intensity of attention.
Dan Ashbrooked defined Micro Interactions, interactions that are
no longer then 4 seconds, as appropriate for interacting with mobile
devices. By decreasing all of the factors that determine the amount
of attention a device request, those quick interaction-bursts can be
enabled for mobile scenarios. Our Design realizes the necessary fea-
tures, offering micro interaction technologies.

Walktrhoug

In order to illustrate the efficiency of our input concept we introduce
a system consisting of a chest mounted depth camera in order to
detect gestural input. The input commands control a small mobile
device, which is equipped with a bluetooth mini headset for acoustic
feedback and communication. Our system is illustrated in Figure 2

(a) and could become advantageous in the following scenario.
Joe is rock climbing with friends and wears his device, which runs

a climbing application. Right in the first sequence of the climb, he
decides to hear classical music in order to calm down. Hence he
moves his hand in front of his chest and spreads his fingers (b). This
gesture activates the input detection of the system and enables Joe
to perform a pinching gesture (c) to evoke the playback. Joe wants
to pay attention to his friends commandos and his environment,
therefore he decides to turn down the volume a little bit. He sim-
ply does so by sliding his index finger softly along the thumb (d).
Since our system offers single hand gestural control, Joe is able to
claw at the wall with the other hand the hole time. The device turn
to its passive state again, as Joe’s hand leaves the field of view of
the camera. Having passed the first intense climbing passage, Joe
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Figure 2

decides to rate the technical difficulty of his last exercise by the
use of his climbing application. He activates the device quickly and
pinches the middle finger (e), representing the rating option of the
application. An acoustic signal indicate the successful access to the
desired functions. Joe continues by pinching his thumb on to the
hand and imagines a dial to be placed across his hand. He is able
to rate the difficulty of his last maneuver by turning this dial in the
corresponding direction (f). Joe performs this interaction eyes free,
still keeping an eye on the wall and his environment. The tactile
abilities of his hand provide all the necessary feedback for Joe to
register the current state of his input. Joe has finished his rating input
and wants to continue to climb. This time he is not able to move the
hand out of the field of view of the camera since the next grasp of
the wall is directly in front of his chest. In order to turn off the device
without moving his hand out of the frame, Joe quickly spreads his
fingers again. This action turns the gesture recording off and avoids
further unwanted input. Later up on his route Joe registers a thunder
far away. He is well aware of the fact that weather conditions are
mission-critical informations for climbers. His lack of ability to locate
the active front from his current position motivates him to use the
weather function of his climbing application. Therefore he simply
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perform the activation gesture, taps the little finger representing the
map function and navigates across his hand. He imagines his hand
to represent a map with the corresponding cardinal directions. As he
moves his thumb tip across the finger’s surface he virtually senses
different directions. An increasing acoustic frequency indicate Joe to
be close to the point which represent the direction the active front
is located. All of a sudden his foot looses stance and slips a little
across a wet stone. Joe is able to immediately hold close to the next
edge and get a secure hold, since his hands were exempted from a
physical device at all times. Finally he continuous to study the map,
finds the bad weather conditions to be located south and decides to
climb down to his base-camp.

This scenario presents multiple benefits offered by our input tech-
nology.

• Using a TOF depth camera is well founded for mobile scenarios,
in its ability to separate the relevant data from the irrelevant
background. Temporary Time-Of-Flight camera’s provide ro-
bust information of the captured area even under extreme
conditions of natural light flooding the observed stage. Hence
a changing environment don’t necessarily effect the quality of
the desired data in a significant manner.

• Unlike a physical device the user has to hold in his hands at all
times in order to perform input, our solution offer the possibility
to interact with imaginary widgets. The hands remain empty at
all time, enabling the user to immediately return to his primary
task.

• All of the presented interaction types are based upon the thumb
being in contact with certain joints of the hand. Because of that,
the user can make use of the tactile features of his hand, giving
precise feedback about the desired process of input. Therefore
our solution enables complete eyes free use. In the presented
scenario this is not only more comfortable, but even more secure
then interacting with a devices which demand the user’s visual
attention.
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• We presented multiple imaginary widgets, offering versatile
input options. Hence the user is able to perform all of the
presented single purpose gestures by single hand gestural input.
The other hand is allowed to interact with the physical world
at all times.

7
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3.2 contributions

This thesis presents a mobile gesture interaction system. Our im-
plementation enables different single hand gestures to be used for
different types of applications. We present two major contributions,
which occupy two different layers within our system’s architecture.
The cooperation of those layers is illustrated in Figure 3.

Z-Cam 

Detecting the Features  

of Interaction 

Applications controlled by 

Imaginary Widgets 

Chapter 

3 

Chapter 

4 

a 

b 

Figure 3: Overview of system’s architecture representing our contributions

• (a) We implemented a feature detection layer analysing the
characteristics of the user’s gesturing hand. Image data, cap-
tured by the depth camera, is analysed by this process in real
time. Our Algorithm detects detailed features of the hand, the
posture and calculates the thumb’s relative position in reference
to the hand and fingers.

• (b) We implemented different imaginary Widgets for single
hand gesture interaction. The resulting data of the feature de-
tection layer is translated into those widgets, enabling access
to continuous and discrete input of the corresponding applica-
tions.

The following subsections contain a more detailed description of
our contributions.
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3.2.1 Detecting the Features of Thumb and Hand Interaction

Our implementation extracts detailed characteristics of a gesturing
hand. The following Figure 4 illustrate a sample of our feature
detection, represented by debug output images.

Camera Image 

Features of Interaction 

Figure 4: The Thumb operating on the hand: The main frame displays the
camera’s image of the user’s hand. The debug image highlights
the user’s thumb within a reference system, which is fixed to the
hand.

A chest mounted Time of Flight Camera observing single hand
gestures, provides the essential data for the reconstruction of the per-
formed gestures. We present the architecture of our feature detection
layer in Figure 5. This layer processes on top of the information of
the captured images in real time. Our implemented solution involves
two different Algorithms detecting two different interaction types.
The thumb on hand interaction (c) and the pinching gesture interac-
tion (b). A preprocessor (a) detects the user’s hand and the desired
gesture type. The resulting data is forwarded to the corresponding
feature detection algorithm.
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Figure 5: Two different tracking algorithms: We implemented thumb on
hand interaction and pinching gesture interaction.

Detecting the Features of the Pinching Gesture

We successfully expanded common techniques to detect pinching
gestures by the use of optical systems. In order to enrich the possi-
bilities of interactions, our solution offers a detailed analyse of the
user’s thumb and index finger as they interact with each other.

Detecting the Features of Thumb on Hand interaction

We implemented the detection of the thumb’s relative position in
reference to the hand. The finger placed closely together span an
input surface the thumb tip operates upon. Hence our solution
interprets the hand and its dimensions as a single touchpad. We
detect the thumb’s relative position and distance to this pad.
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3.2.2 Applications controlled by Imaginary Widgets

We implemented imaginary widgets, which translate the features of
the user’s gestures into application input commands. We defined
widgets like sliders dials and buttons, the user imagines to be placed
along his fingers and thumb. The interaction with those widgets,
allows the user to perform continuous and discrete input for numer-
ous type of applications. We designed different visual and audio
applications in order to demonstrate the efficiency of our gesture
detection technology. A sample Application and the corresponding
interaction is illustrated in Figure 6.

Figure 6: Pong controlled by imaginary slider: The user controls a paddle
in order to hit a flying ball, as he slides his thumb tip across the
hand.

Since our solution includes two different interaction technolo-
gies, we implemented two created two different groups of Widgets.
Widgets controlled by pinching gestures and Widgets controlled by
thumb on hand interaction. The following paragraphs illustrate the
corresponding types.

11
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Widgets based on Pinching Gestures

We designed and implemented the following interaction technologies
as illustrated in Figure 7.

• (a) Continous slider along our thumb to be reached by the index
finger.

• (b) Continous dial between thumb and finger as they rub each
other.

• (c) Discrete itembar along our thumb to be reached by the index
finger.

a b 

Figure 7: Imaginary widgets based on pinching gestures

Widgets based on Thumb on Hand Interaction

Our imaginary widgets addressing thumb on hand interaction, en-
able the possibility to use the following types of gestures in order to
control different application.

• (a) Touchpad analogy, horizontal and vertical Sliders across our
palm.

• (b) dial across the finger.

• (c) Buttons on top of the finger.

• (d) Buttons on top of each fingertip to be reached by the thumb.

By the help of those control elements we are able to build rich
applications, which can be controlled by hand and thumb interaction.

12



3 introduction

a c e 

d b 

Figure 8: Imaginary widgets based on thumb on hand interaction

Imaginary buttons placed on our palm are implemented in order
to control a playlist of an audioplayer or two select different items
within a game. Sliders and dials are used in order to change volume
or draw lines. The presented widgets enable countless interaction
possibilities for many common needs in mobile interaction. Giving
the user the possibility to interact with his bare hand, frees him
from the need to have a physical device as input space. Eyes free
interaction is enabled as we make advantage of the humans ability
of receiving tactile feedback, as the thumb tip contacts the hand. In
comparison to many gestures involving big movements by arms and
body, our desired inputspace is relatively small. This leads to less
muscles beeing involved and less public attention beeing caused into
our interaction movements and therefor less fatique effects on the
user while operating.
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3.3 structure

This thesis is structured as followed. Our design decisions and imple-
mentation are inspired by a great number of prior work. In chapter
4 we describe the corresponding investigations. We illustrate our
solution to detect individual features of the user’s gesturing hand in
chapter 5. The resulting data offer the possibility to define imaginary
widgets on top of the gestures, controlling different applications.
The relevant procedure is described in Chapter 6. In order to envi-
sion and realize a gesture interaction technology we need to narrow
down the type of gestures and the detection mechanisms, which are
appropriate for our purpose. This assessment is discussed in chapter
7. Finally we conclude the results of our work and encourage future
work in chapter 8.
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4
R E L AT E D W O R K

The related work of this thesis is divided into three main chapter.
First of all we want to list work, that motivated us and investigated
the need for innovative interaction interfaces for mobile devices. The
following section consists of publications that inspired the concept
and implementation of our solution for gestural interaction. The last
section of this chapter lists commercial and scientific devices that are
related to our work.

4.1 investigations of mobile interactions and gestures

Ni and Baudisch [17] illustrated the miniaturization of mobile de-
vices. The ubiquitous use of such devices can be enabled by invisible
integration into cloth or skin. This work discusses different sensor
implementations and how users interact with them in order to iden-
tify boundaries for the miniaturization of mobile devices. The fat
finger problem restricts this ongoing process. Therefore the removal
of input hardware that is linked to the users finger is recommended.

Gustafson, Bierwirth and Baudisch [9] discovered the humans
abilities to interact with interfaces, the user imagines and interacts
with. Hence they introduced imaginary widgets the user can take
control of, in order to bring gestural interaction to screen-less devices.
The input concept consists of a non-dominant hand forming an L-
Shape in order to fix a refernce system into mid air and a dominant
hand, which interacts within the created space. The corresponding
implementation is based upon a chest mounted infrared camera
observing the bimanual interaction. Further this work contains an
interesting user study, investigating the user’s ability to interact
within an imaginary space.
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4 related work

Patel and KientzFarther [19] investigated the proximity of users
to their mobile phones. The most central idea of this work is the
research about users and how their phone is accessible to them. A
study including sixteen participants over three weeks is presented.
This study showed that users expectation about how easy they ac-
cess their phone diverge from reality, and depends on certain design
factors of the phone. The paper is emphasise the need to develop
mobile devices which offer more efficient access.

Cui et al. [5] presented an empirical study of users carrying and
interacting with their mobile phone. The data is collected across
cultural barriers in four different continents. This research gives
insight about personalization, security and different preferences for
mobile phones to be placed along the body. Two different types
of carrying a phone were identified. On the one side instrumental
attributes present: easy to access and secure. On the other side non
instrumental attributes: style concentrated and personalized.

Thad E. Starner et al. [22] studied users behaviours and prefer-
ences for scheduling appointments. The study includes data from
one hundred and thirty-eight participants and concentrates on inter-
action with PDA’s in order to perform the desired scheduling task.
PDA users overstated the efficiency of their device. Further this study
revealed that a lot of users tend to "buffer" their appointment notes
on paper notes for later input to the PDA. This behaviour is justified
in the lack of reachability of the device and therefore exaggerates
the need to create input technologies that are always at hand.

Kristoffersen et al. [15] explored interfaces for hand held computer
supported cooperative work. Empirical research has founded the
need for new innovative interaction design for such devices, since
the current ones demand to much attention for mobile scenarios.
The system called Motil, as introduced in this work, fulfils those
demands by limiting visual feedback and enabling audio feedback.

16



4 related work

Wolf et al. [25] investigated the ability of users interacting with
a device by the use of hand drawn gestures. In order to perform
the gesture the user is equipped with a stylus. The main issues of
this study are the abilities of users to remember gestures, perform
gestures and how much variety users create while trying to perform
the same gestures.

Kallio et al. [11] studied technologies and the necessity visualiza-
tion of gestural commands. This kind of visualization is appropriate
especially because of the lack of feedback. Basic concepts for visual
animations for gestural interactions are discussed

Kela et al. [12] propose gestural control detected by accelerometer
sensors as an alternative to modalities such as styles based interac-
tion and speech recognition. The study found that users find gestural
commands more naturally. Additionally the necessity of personaliz-
ing commands has been found, since the study proved that different
users tend to define different gestures for the same operation.

4.2 conceptual work related to gestural interaction

Baudel et al. [1] investigated free hand gestures using a DataGlove.
This device can measure the orientation of the hand and position of
each finger. It is used to control a presentation on a remote computer.

Bowman et al. [2] illustrated a menu interaction system based on
bimanual interaction by the use of Pinchgloves. This cloth glove can
detect pinch gestures and contact between each finger due to electri-
cal sensors weaved into the glove on each fingertip.The Tulip Menu
enables the possibility to access top level menu items by pinching fin-
gers to the thumb on the non dominant hand and menu commands
by pinching fingers on the dominant hand. A study showed that the
presented system is more comfortable and became efficient after a
short learning phase compared to two common Virtual environment

17



4 related work

systems.

Ni et al. [18] presented the Rap Menu. A system to navigate
through menu items by rotate and pinching. The user rotates his
hand in order to reach certain areas of a radial menu layout. By
pinching individual Fingers he is able to select the desired item.

Kohli et al. [13] investigated bimanual interaction in virtual envi-
ronments. The dominant hand interacts on the non dominant hand.
A user study showed that using physical props for tactile feedback,
helps users to interact in virtual environments more effectively.

Wilson [24] illustrated a lightweight computer vision algorithm,
detecting when a user brings index finger and thumb together. This
pinch gesture can be detected by the use of connected components.
The hand is detected as a closed connected component, as the static
background is erased due to background subtraction . The pinching
gesture is identified, when thumb and index finger form a hole
within this connected component from overhead view. The pinch
itself as discrete input and its position relative to the camera as
continuous input, is used in order to control a desktop scenario and
a map application.

Ashbrook,Starner et al. [7] presented the gesture pendant input
system for home automation concepts. Gestures are detected by an
infrared camera as a necklace mounted to the chest. The camera is
ringed with infrared Led’s flooding the area in front of the users chest
with infrared light. Enabling gestural interaction, offers interfaces to
entertainment systems, lightning and heater and is especially appro-
priate for users with limited sight or motor abilities. Additionally the
Gesture pendant can be used as a health monitoring device, due to
the fact that the target group of the elderly and disable people often
suffer from diseases which have tremor symptoms. Those tremors
can be detected by the gesture pendant and evoke an alarm. User
defined Gestures and Control Gestures are identified by computer

18



4 related work

vision and Hidden Markov Model.

Starner et al. [21] investigated a System to detect sign language by
the use of camera tracking. Hidden Markov models are used in order
to determine he identity of the performed gesture. Two different
designs are used in order to set the view port of the camera. A desk
mounted camera for static scenarios and a cap mounted camera for
mobile scenarios. The desk mounted system achieves an accuracy of
ninety-two per cent. The cap mounted reaches up to ninety-seven
per cent.

Harrison et al. [10] presented the skinput system. A system in
which the skin along the forearm is used as input space. Contact of
the Fingertips on the non dominant arm are detected by acoustic
sensors. Those sensors can measure the mechanical vibration of the
skin evoked by a tap. Additionally the system is equipped with a
projector displaying different menu items along the input area for
visual feedback.

Bretzner el al. [3] presented computer vision algorithms to detect
hands in image frames and determine their position and pose. The
algorithms include particle filter and multi-scale color feature detec-
tion. A home automation system can be controlled by the use of the
defined gestures. Early studies showed that their current approach
suffered from the users fatigue and ability to control marking menus
by the use of gestures.

4.3 gestural interaction devices

Kolb et al. [14] gave a very interesting overview of depth cameras
equipped with the Time-Of-Flight Technology. It consists of descrip-
tions about different TOF technologies, their advantages and draw-
backs, different noise types and the corresponding algorithmical
solutions representing the state of the art of image processing. This

19
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work is highly recommended for everyone, attending to work with
TOF cameras.

Zimmerman et al. [26] discovered early in 1986 the use of an elec-
tronic glove as an interface device. The Glove enables the ability
to measure hand orientation, bending and position of individual
fingers. Haptic Feedback for bending different fingers and vibrations
are also provided by those gloves. The Z-Glove and DataGlove are
used in order to manipulate virtual objects.

PowerGlove [6] is a commercial product by mattel released in 1989

for the nintendo entertainment system. The glove can measure yaw
and roll of the users hand. Build-in flex sensors measure the bending
of the finger. Additionally buttons are placed on the back of the glove.

The P5 glove [8] is designed for human computer interaction. The
system can detect the gloves yaw,pitch and roll by a low degree of
noise (1 degree). An optical tracking system determines the gloves
position in a range up to four foot from the camera. Additionally
the fingers are equipped with sensors, enabling the detection of the
fingers bending by an accuracy of 0.5 degree.

The Wiimote [4] is an input interface for the gaming console Nin-
tendo Wii and was released in 2006. It allows gestural input by
accelerometers, measuring the Hands orientation and acceleration.
Additionally the device is equipped with an infrared camera, that
tracks sensor bar LED’S placed next to the TV. This technology of-
fered game designers the ability to develop pointing and shooting
game concepts for the Wii-console. The data collected by the Wiimote
is transferred via bluetooth to the gaming device in 100 data pack-
ages per second. The hardware plug-in Wiimotion Plus, consisting
of a dual axis gyroscope and a single axis gyroscope, offered higher
accuracy for motion detection.

Playstation move [16] is a motion detecting device developed for
Playstation in 2010. It consists of a light ball filled with RGB light-
emitting diodes on top of the device. This Ball can be tracked in three
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dimensional space by the Playstation camera which is mounted to a
static object close to the television. Additionally the device contains
several sensors to determine the devices rotation and a magnetome-
ter for calibration.

Microsoft’s kinect camera system MicrosoftKinect:10 calculates
three dimensional information of the observed area based on struc-
tured light technology. It operates in range of 0.7 meter up to 6 meter.
A structured infrared pattern is projected onto the scene. The defor-
mation of the structure observed by the infrared camera can be used
in order to recreate the three dimensional structure of the observed
area. The ability to separate the users body from the background
and form a generic skeleton, enables motion tracking.
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5
I M P L E M E N TAT I O N

The following chapter presents our implementation of thumb and
hand interaction. The corresponding dataflow, the individual com-
ponents and their architecture is illustrated in Figure 9
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Hand Features 
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Figure 9: Overview of feature detection: The preprocessing component ex-
tracts the user’s hand from the background. The isolated mask of
the hand is used in order to analyse the features of the interaction.

The design of our mobile interaction technology involves a cam-
era, which continuously records the area in front of the user’s body.
Hence the implementation of our gesture detection demands a high
quality of avoidance of unwanted activation by irrelevant data. A
robust separation, between dispensable background data of our
changing environment and the user’s hand gestures is a crucial task.
A preprocessing unit (a) fulfils this demand, by continuously pre-
venting useless data from being parsed to our interaction algorithm.
We implemented two different algorithms tracking two different
types of interactions. The group of pinch like interactions (c) and the
group of thumb on hand interactions (b). The feature analysis of the
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5 implementation

user’s pinch gestures is presented in Section 5.2. In Section 5.3 we
discuss our technique for detecting the thumb on hand interaction.
The following paragraph introduces a high level overview of foun-
dational steps in processing image data. The reader of this thesis
is assumed to be aware aware of the following basic concepts and
introduced terms.

overview of computer vision based feature extraction

This section discuss the foundation of processing image data by the
help of Open Computer Vision and illustrates our general course
of action. OpenCV is an open source library, which consists of pro-
cedures for managing image data. Image Data is stored by a raster
image defined by a m*n Matrix. OpenCV offers the possibility to
process on top of this data with statistical procedures in real time.The
following list of features determine the main advantages of OpenCV:

• Motion analysis

• Image segmentation

• Image smoothing

• Feature detection

• Histogram analysis

• Principal component analysis

• Geometrical functions

Our general workflow for feature detection in image data is illus-
trated in Figure 10.

• (a) The first step is to capture the image frame.

• (b) Based on prior information we create a mask of interest.

• (c) The mask is interpreted as a connected component.
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a b c d 

Figure 10: Overview of processing image date: Capture the image(a), Mask
of interest(b), Connected components (c), feature detection (d)

• (d) We detect features of our connected component. The cen-
troid of our connected component is illustrated as a sample
feature.

Capturing image frames

Each entry of the image contains information, representing the in-
tensity of the attribute. Within a grayscale image, a single sample
attribute is stored in a single channel, defining the amount of light
varying from black, across different gray shades to white. This be-
comes helpful if we want to measure a single band within the electro
magnetic spectrum, for example the intensity of infrared light that
captured objects reflect. Our solution takes advantage of this type
of matrix in order to store two type of informations captured by
our camera. Grayscale images containing the intensity of infrared
light measured and distance values for each pixel, referencing the
distance to the lens.

In color images three channels per pixel offer the possibility to
store three samples, defining the color of the pixel. We use this type
of image in order to store the values of the captured three dimen-
sional environment. In this case RGB values are replaced by the x,y
and z values of the real world’s coordinates.

The following Figure 11 illustrates the types of images, relevant
for our solution.
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a b c 

Figure 11: The different types of images: The distance image (a) relations
the distance to the lens for each pixel. The infrared greyscale im-
age (b) contains the infrared measurements. Three-dimensional
information visualized as a point-cloud (c) in OpenGL

The Region of interest

The region of interest within our image contains the data, which is
relevant for further analysis. Useless data needs to be reset to zero in
order to avoid further proceeding to critical Sections. In general this
procedure is performed by thresholding. The definition of a lower
boundary and an upper boundary excludes irrelevant data from
further processing and generates a spectrum of values that are valid
for the region of interest. In case of depth images, thresholding is
performed by setting upper and lower boundaries for the distance
values of each entry within our distance image. Additionally further
constraints need to be implemented in order to identify the area that
is desired to detect.

a b c 

Figure 12: The Region of interest

Figure 12 illustrates the process of thresholding an image to our
region of interest.The raw distance image contains all of the cap-
tured information (a). On top of this raw data,we created a mask
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only containing the data of our interest (b). This mask can also be
transformed to a monochromatic image (c) only containing binary
information about. This binary mask can be used in order to map
it to other images, for image comparison or in order to calculate
connected components.

The Connected Components

Connected components are areas of neighboured pixels which are
equally labeled within a binary image. Each connected area of pixels
represents its own connected component. OpenCV offers the possibil-
ity to detect connected components and store their encasing contours
within a tree structure, representing topology and hierarchy of our
mask. The mechanisms to label the assignment of each component
are illustrated in Figure 13. The background area is identified as in-
valid and is not assigned to the component’s storage tree. The main
component is the biggest connected area of valid pixels. The enclosed
component is stored as a child node of the main component.

Enclosed Component 

Main Component of Interest  

Background Area  of no Interest 

Figure 13: The concept of connected components: The enclosed component
is identified as a hole within its host component.
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Features

Connected components offer the possibility to detect different fea-
tures of the mask. The following Figure 14 illustrates some of the
most important features, that are used within our solution and oper-
ate on top of connected component data.

a b c d e 

Figure 14: Features: Center of gravity (a), bounding box(b), geometrical
area(c), hull(d), convexity defects(e).

• (a) Center of gravity is the mean of all the mass within the
image. The advantage of working on top of this feature is, that
it is relatively stable and fixed in relation to the orientation of
the shape. Small groups of outliers around the shape, appearing
due to measurement noise, do not effect the position of the
center of gravity in a significant manner.

• (b) The bounding box function is a fast and robust way of
identifying the region of interest within our image. It returns
the smallest upright rectangle containing all of the mask’s
information.

• (c) Geometrical functions offer the possibility to calculates the
size of the area.

• (d) The convex hull function calculates the convexity of a 2d set
of points using the Sklansky [20] algorithm.

• (e) Convexity defects are outstanding areas of the mask dis-
turbing the continuity of the corresponding convex hull. This
function is commonly used in gesture detection in order to
identify regions, which indicate potential fingers segments.
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Constitutive Feature detection

This paragraph illustrates the use of foundational features within an
interplay in order to detect advanced features. The following exam-
ple of detecting fingertips, its underlying mechanisms and terms are
reused within the upcoming implementation Sections.

We propose the usage of a virtual field of view in order to locate
the region where we expect the fingertips to arise as illustrated in
Figure 15. The calculation of a virtual field of view is a fundamental
procedure within our solution. Based on a direction vector, a position
vector and an angle of view, we are able to fix this field of view in
two dimensional space and define a subregion of interest within our
mask. We start by calculating the point where our hand intersects
with the edge of the frame. This point is called the enterpoint and can
be determined by iterating through the pixels of our mask, searching
for all pixels which intersect with the frame’s edge and calculating
their mean. The orientation vector is spanned from the enterpoint
to the spatial moment. The direction vector of our virtual field of
view is now defined by the calculation of our hand’s orientation. We
use the spatial moment as the position vector and fix the field to this
position. Our investigations found an angle of view of 110 degree as
appropriate to cover all of the fingers within the field of view.

Spatial Moment 

Enterpoint 

Orientation 

Virtual Field of View 

Figure 15: The virtual field of view: fixed to the spatial moment, it covers
an area of interest

We continue to calculate the convexity defects laying within the
virtual field of view as illustrated in Figure 16. This function, as
implemented in OpenCV, offers the possibility to store convex-
ity defects as a list. Each single sample is represented by a tuple
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(Start,End,Depthpoint,Depth). The start and end points define the
fingertips. Depthpoints represent the space between the fingers. The
values of those attributes can be used for further investigations,
concerning the individual fingers or gestures.

Depthpoint 

depth 

Start 

End 

Convexity Defects 

within 

Virtual Field of View 

Figure 16: Detection of fingers by the use of the virtual field of view: The
virtual field of view is fixed to the spatial moment, it contains
an angle of 110 degree and covers the finger
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5.1 preprocessing the image

Our system needs to be able to identify the data of the user’s ges-
turing hand even in mobile scenarios. Hence it is crucial to avoid
unwanted activation of our mobile device, by preventing irrelevant
data from being processed by the interaction detection solution.
Therefore we implemented three different components, forwarding
only relevant data of the user’s hand to the corresponding tracking
algorithm. The concept of our preprocessing solution is illustrated
in Figure 17.

Chapter 3.1.3 

Pinch 

Features 

Type of 

Gesture? 

Interaction? 

Hand? 

  true 

  true 

Chapter 3.1.1 

Chapter 3.1.2 

Thumb on 

Hand Features 

a 

b 

c 

Figure 17: Overview of the preprocessing

• (a) The first component analyses spatial properties of observed
objects, in order to separate the user’s hand from the back-
ground.

• (b) The second component processes on data which successfully
passed the first component. It analyses the hand’s motion and
shape in order to detect if the user performs the system’s activa-
tion gesture and its state. This component can be understood as
an additional barrier detecting if the detected object is a human
hand. We found random objects and hand’s to quite unlikely
simulate the defined key gesture by accident.
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• (c) The third component analyses the hand, in order to detect
the user’s desired gesture and proceed the data to the corre-
sponding algorithm.

5.1.1 Detecting the Hand

In this Section we want to present our light weight algorithm, de-
tecting if the captured image contains data of a potential hand.
Identifying objects in a camera image is a complex problem, mo-
tivated by multiple research fields. Generic solutions suitable for
universal conditions are still futuristic visions. In general it is appro-
priate to tie the algorithm to the conditions of the camera system.
If we are aware of the properties of our camera and the physical
features of our object of interest, then we are be able to define logical
assumptions of the expected data corresponding to the desired object.
Our Camera is mounted to the chest and has a relatively small angle
of view of 40 degree. The user’s interacting hand has to be placed
within this angle and shouldn’t and is not expected to be further
away then a meter. This physical precondition enables the possibility
of defining two types of features as listed below.

• The Distance: Subtracting the background based on depth in-
formation.

• The Spatial properties: the two dimensional mask of the hand
occupy characteristic features.

The corresponding algorithms are discussed in the following para-
graphs.

The Distance

Our device supports the ability to capture depth information of an
area within the range of 0.3 up to 7.5 meter in distance to the camera.
Because of natural restrictions of the users arm length, we assume
the hand being within one meter in distance to the camera. Therefore
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the space of interaction is within a distance range of 0.3 and 1 meter.
We identify close objects by thresholding the distance image to the
corresponding boundaries as illustrated in Figure 18.

Raw Depth Image Debug of Distance 
Thresholding 

Figure 18: Thresholding the depth image: The raw image displays multiple
multiple objects within our interactionspace. The thresholded
image illustrates the user’s hand extracted from the background.

The Spatial Properties

Once potential objects of interest are identified based on depth data,
we proceed by analysing the two dimensional spatial properties of
the corresponding masks. Both of the following constraints need to
be fulfilled for further processing and are illustrated in Figure 19.

• (a) The user’s hand is supposed to be the closest object to the
camera. Hence we assume the hand contour to be the biggest
connected component in the contour storage tree.

• (b) The user’s hand is supposed to enter sidewise the field of
view of our camera. Therefore our desired connected compo-
nent needs to cut the edge of the frame. In order to monitor
this feature, check for the existence of the Enterpoint.

Once the listed constraints are fulfilled we forward the data of
the potential hand mask to the next component described in the
following subsection 5.1.2

5.1.2 Monitoring the state of interaction

This subsection describes the implementation of an activation gesture,
unlocking the system to read the user’s gestures. We implemented
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Raw Depth Image Debug of Features 

(b) Enterpoint (a) Main Component 

Figure 19: The Analysis of spatial properties: The thresholding processing
on the raw depth image enable the possibility to detect the main
contour. This contour contains the biggest area and enters at the
edge of the frame

the following activation Gesture as illustrated in Figure 20. The
interaction system remains in passive state as long as the illustrated
sequence of signs is not performed in its defined row and rhythm.
In order to deactivate the system, the user spreads his fingers again
as he did in the activation gesture (Phase 2) or moves his hand out
of the frame.

Phase 2 Phase 3 Phase 1 

Figure 20: The activation gesture: The Sequence of signs is divided into
three phases. A closed hand (Phase 1), an open hand (Phase 2)
and again a closed hand (Phase 3)

The following paragraphs illustrate the constraints of each indi-
vidual state, which need to be fulfilled in its corresponding order.

Phase 1 Hand registration

The first step within our sequence analyses the data directly parsed
from the prior hand detection component. The object interpreted as
a potential hand, has to fulfil all of the following constraints in order
to be successfully detected.
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• Motion: We continuously calculate the masks’s spatial mo-
ment and compare it with the previous measurement. This
lightweight motion analysis offers the possibility to detect a
rough understanding of the speed of the hands movement. Only
if the hand moves slower then a pre defined upper boundary,
the sign becomes labelled as true. This procedure is needed in
order to exclude fast irrelevant gestures the user performs in
front of his body.

• Rhythm: A time stamp is measured once the hand enters the
frame and fulfils the Motion constraint. The sign is labelled as
detected, if the mask remains within the frame longer than a
half second and no longer then two seconds. Hence only within
this intervall the data of the mask is allowed to proceed into
Phase 2.

Phase 2 Revealing Finger

The second step is the most crucial within the sequence, because
the user reveals a number of natural features of his hand as he
spreads his fingers. We are able to detect those fingers by calculating
convexity defects as illustrated in Figure 21.

Debug Output 

b 

a 
c 

First Defect 

Second Defect 

Third Defect 

Figure 21: The convexity defects of the user’s finger: Each individual defect
is illustrated by its coloured vectors
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We detect three defects identifying four fingers. We use the tuples
returned by the convexity defect function of OpenCV, in order to
monitor the following constraints.

• Angle of Finger: The angle of spread of each finger to its neigh-
boured finger has to be bigger then 10 degree and smaller then
60 degree. This constraint fits to the natural conditions of the
human hand. We calculate the angle by defining two vectors
for each defect. One vector reaches from the depthpoint to the
startpoint, the other from the depthpoint to the endpoint. The
angle in between the two vectors represent the angle of spread
of each finger.

• Size in 2D Space: The depth of each defect has to be longer then
3 pixel.

• Size in 3D Space: The average length of all of the finger in
three dimensional space, has to be longer then 3 cm and shorter
then 13 cm. The implementation of this constraint is illustrated
in Figure 22. We identify the position in three dimensional
space for the depthpoints, startpoints and endpoints for every
single defect. The length is measured for each of the three
depthpoints to its individual start and endpoint. The average
length of the finger is defined as the mean of the resulting
six direction vectors. Calculating the mean is necessary since
the finger contain a significant amount of noise around the
fingertips. Additionally the result of this calculation is reused
in Section 5.3.

• Motion: The hand is supposed to not move in significant man-
ner. We monitor the motion as described in Phase 1.

• Rhythm: The sign is labelled as detected, if the above mentioned
constraints are true longer then a half second and no longer
then two seconds. Within this span the data of the mask is
allowed to proceed into Phase 3.
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Phase 3 Completing the Gesture

The final gesture is a closed hand. This final state of our sequence
is simply limited to the constraint of not being allowed to move
abruptly through the images frame. The corresponding motion is
supervised as described in the previous phases of the sequence.

Sample of Fingerlength 
in 3D Space 

Debug Output of 
Pointcloud 

Figure 22: Measurement of the finger’s length in three dimensional space
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5.1.3 Detecting the Type of Gesture

This Section describes our solution to detect the user’s desired type
of input as illustrated in Figure 23. The user unlocks the device by the
activation gesture, which is described in the previous subsection 5.1.3.
Once this activation gesture is within its third and final phase, the
data of the hand’s mask is forwarded to this component, detecting
the type of interaction. If the user performs a single pinch gesture
within an initial time slice of one second, the data of the hand’s mask
will be continuously parsed to the component detecting the features
of the pinch. If this gesture is not detected, data is forwarded to
the component, detecting the features of thumb on hand interaction.
The result of this conditional construct is constant as long as the
individual interaction stays in its active mode. It is reset as soon
as the state of interaction turns passive. The relevant algorithms in
order to robustly detect if the user performed a pinch gesture are
discussed in Section 5.2.1

Pinch 

Features 

Thumb on 

Hand Features 

a 

Is 

Pinch? 

  true   false 

Gesture Type 

Identifier 
b c 

Figure 23: The gesture identification: The hand’s mask (a) is initially
checked for the existence of a pinching gesture. Depending on
the conditional result, the data is forwarded to the component
detecting the features of the pinch or to the component detecting
features of thumb on hand interaction.
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5.2 detection of pinch

The contour of the pinch is constructed by a hole between thumb
and index finger as they contact each other. The following chapter
presents our solution to robustly detect the existence of the pinch
and its features. The corresponding components and their position
within our architecture is illustrated in Figure 24. The algorithm
(a) for the detection of this area is described in Section 5.2.1. The
detailed analysis of the pinch component (b) is presented in Section
5.2.2.

Pinch 

Features 

Thumb on 

Hand Features 

Detect 

Pinch 

  true   

Pinch 

Features 
b 

a 

Chapter 3.2.1 

Chapter 3.2.2 

Figure 24: Tracking of pinch interaction
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5.2.1 The Pinchmask

The upcoming subsection describes our solution to detect the pinch-
ing gesture. Since our algorithm is based on the content of the two
dimensional mask and its components, we can simply abandon the
concrete depth and gray information of the image. Shadow effects,
cloth or jewellery can create noisy measurements. In order to avoid
those effects arising wrong detection, we need to get rid of those
areas by simply dilating the image. The calculation of the connected
component of the hand’s mask as illustrated in Figure 25, offers
the possibility to determine its spatial properties. The area (a) con-
tains useless background information. The child node (c) within the
hand’s component (b) represents the desired shape of the pinch.

Enclosed Component of Pinch 

Main Component of Hand  

Background Area of no Interest a 

b 

c 

Figure 25: The connected components of the mask: the area (a) contains
useless information. The pinch (c) is a child node of our hand’s
component (b).

After we detected the existence of the pinch component,we need
to ensure that this area is created by the desired gesture, instead
of noisy fragments. Hence we propose to check if the position and
size of the pinch component is reasonable in reference to our hand’s
orientation. As the user reaches sidewise into our field of interaction,
we assume the pinch component to appear roughly within the end of
our forearm. Additionally the component of the pinch must contain
a significant size in relation to the hand’s mask. We reuse the concept
of the virtual field of view as illustrated in Figure 26, in order to
monitor our assumption concerning the position of the pinch. The
area of the pinch component must lay within the virtual field of view
and contain at least a twentieth of the area, which is occupied by the
hand’s component.
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Virtual Field of View  
spanned by 
Orientation of Hand 

Contour of Pinch 
in  
Virtual Field of View 

Figure 26: Conditions of pinching gesture. The Pinch must lay within the
virtual field of view and contain at least a twentieth of the area.

5.2.2 Pinch features

The following subsection discusses the detection of the features of the
pinching gesture. The main feature we are looking for, is the point
of contact between thumb and index finger and how this point is
positioned in relation to a robustly fixed number of general features
of the hand. The sum of characteristics, that is needed in order to
identify rich interactions, is illustrated in our debug-output image of
Figure 27.

Contact between  
Thumb and Indexfinger Root of Thumb 

Spatial Moment 
of Pinch 

Spatial Moment 
of Hand 

Figure 27: Constuct of pinching features: The interplay of different spatial
features enables the possibility to detect detailed information of
the interaction

The identification of the thumb is the most foundational task in
order to detect the contact between the thumb and the index finger.
We simplify this challenge by approximating the contour of the pinch
down to a Polygon, which consists of only 4 Vertices as illustrated
in Figure 28. The region of the thumb is adjacent to one of the four
vectors of the polygon.

In order to determine which Vector fits to the thumb, we need to
proceed by generating a more precise understanding of the shape
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Contour of Pinch 
approximated as 
4-Vertex Polygon 

Figure 28: The approximated polygon of the pinch contour

of the hand’s mask. We detected a rough orientation of the hand
in the previous subsection. For further processing we need a more
precise solution, calculating the hand’s orientation and excluding
the orientation of the forearm. We do so by spanning a vector from
the spatial moment of the hand component to the spatial moment of
our pinching component.

Spatial Moment 
of Hand 

Spatial Moment 
of Pinch 

Rough Orientation Corrected Orientation 

Figure 29: The corrected orientation: is represented by a vector spanned
from the spatial moment of the hand to the spatial moment of
the pinch

The prior assumption that our hand is held as illustrated in Figure
30, simplifies our task in significant manner. Hence we assume the
vector representing the thumb, to lay below the spatial moment of
the pinching component. We identify this vector, by spanning an
orthogonal vector in reference to the orientation of our hand, which
roots down to the bottom of the polygon. This vector intersects with
the vector, representing the thumb. The identification of this vector
and their corresponding vertices, represent the two most relevant
features of our solution. The Position of the point of contact between
thumb and index finger and the position of the point where our
thumb roots out of the hand
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Intersection of the 
Orthogonale of Orientation 
and 
the Contour 4-Vertex Polygon 

Two Vertices representing the  
Thumb Vector 

Figure 30: Detecting the vector representing the thumb and its vertices.

The described algorithms compile a construct of features as illus-
trated in Figure 31. This construct enables the detection of detailed
information about the interaction that is performed by the user. We
implemented imaginary widgets on top of those features in Section
6.1.

a 
c 

b 
c 

Figure 31: The construct of detected features: The spatial moment of the
hand (a) and the pinch (c) in relation to the rooting point (b) of
the thumb and the point of contact between index finger and
thumb (d).
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5.3 detection of thumb on hand interaction

The following chapter describes our implementation of thumb and
hand interaction. Our solution takes advantage of the fact that the
thumb represents an exceptional position according to the hand. We
approximate the palm of our hand and fingers as a flat surface. De-
tecting the position of the thumb in reference to this surface, enables
the possibility to create thumb and hand interactions as illustrated
in Figure 32.

3D Model of 

Thumb On Hand 

Debug Output 

of Implementation 

Figure 32: The hand as a touchpad: The position of the thumb in relation to
the surface is illustrated as a conceptional model in comparison
to our debug output

The architecture of our solution is illustrated in Figure 33. The
most foundational step is to smooth the image data and erase wrong
measurements before further processing, since further procedures
within our solution are very sensitive concerning the correctness
of the depth data. After determining foundational features of our
hand’s orientation and size, we use statistical methods in order to ap-
proximate the hand as a flat surface. The resulting three dimensional
plane is a useful tool in order to detect the thumb, since it occupies a
distanced position in reference to this plane. By the use of the Data
of our hand’s plane and the thumb’s features, we are able to detect
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the thumb’s relative position in relation to the corresponding hand.
Additionally we describe our solution to detect the thumb tapping
individual fingers.

The following Figure 33 illustrates the structure of the following
section and the component’s architecture.
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Chapter 3.3.1 

Chapter 3.3.2 

Figure 33: Architecture of the detection of thumb and hand interaction and
its corresponding chapters within the thesis

• (a) Preprocessing detects noisy depth measurements within our
image

• (b) Analyse of foundational features is needed in order to
segment the hand in regions corresponding to their dimensions

• (c) Analyse of the hand’s surface

• (d) Analyse of thumb
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• (e) Detection of the thumb’s relative position in reference to the
hand

• (f) Detection of the thumb’s relative position in relation to the
finger
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5.3.1 Preprocessing the Image

The following subsection describes our simple light weight proce-
dures, in order to increase the precision of our data. The image
data captured by depth cameras is sensitive to depth informations,
especially along the depth axis. Hence it is necessary to exclude
noisy measurements from beeing parsed to further algorithms. The
efficiency of our preprocessing unit in contrast to noisy raw data is
illustrated in Figure 34.

Z-Cam 

Z-Cam 

Before 

After 

Z 

Figure 34: The efficiency of our preprocessing unit: Both images illus-
trate the corresponding debug output of OpenGl. The hand
is recorded from the front. The initial point-cloud, captured by
the depth camera, reveals a significant amount of noise along
the z-axis. Our preporcessing unit successfully detects outliers
and produces a detailed point-cloud.

Detecting outliers within a point-cloud, which is produced by a
depth camera, is a complex task. However, since we assume the
hand’s skin to contain a continuous diffuse reflectivity, we are able to
solve this problem by the use of a light weight solution, processing in
real time. Statistical outliers within our data will be detected in two
different data rooms representing the same mask of interest. The data
of our two dimensional infrared mask and the three-dimensional
point-cloud. The detection of valid pixels within both images is
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implemented in the following two sequential passages and generate
one global mask of valid pixels.

Erasing noisy pixels based on depth measurements

Noisy pixels, which contain invalid z-values can be detected by
measuring the depth mean and the standard deviation. This is possi-
ble since we are only interested in detecting a single object, which
doesn’t offer any rapid falloffs in depth. Three dimensional entities,
which contain a depth value smaller then the half standard deviation
subtracted from the mean is labelled as invalid.

Erasing noisy pixels based on infrared amplitude measurements

The user’s skin reflect the infrared light emitted by the depth camera
system. A significant amount of depth measurement errors appear
due to not enough infrared light being reflected by the object. How-
ever, since the user’s skin is expected to contain a nearly constant
amount of albedo, we assume the hand to reflect a constant amount
of infrared light. This precondition indicates that noisy measure-
ments within the amplitude image, occur due to the shape of the
hand. Round finger’s segments and the edge of the hand doesn’t
reflect enough infrared light in order to determine the distance to
the camera. We need to identify those areas of wrong measurements,
based upon the standard deviation and mean of the hand’s infrared
mask. Each entity within our image, which contains a value smaller
then the standard deviation subtracted from the mean are labelled
as invalid.

Infrared Image of Hand Noisy Pixels of Hand 

Figure 35: Noise detection based on the infrared image: red coloured areas
are labelled as invalid.
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The following Figure illustrates different point-clouds, visualized
in OpenGL. Each point-cloud represents a state of preprocessing. The
raw point-cloud (a) contains a significant amount of noise. Further
precise calculations based on top of this data is not appropriate
for our purpose. The point-cloud (b) is the resulting point-cloud,
after elimination of noisy pixels, detected within the depth data.
The result is promising, but still to inaccurate in order to detect the
thumb. The quality of our final solution is illustrated by point-cloud
(c) and offers the possibility to detect the hand’s surface and the
thumb.

Z 

a b c 

Figure 36: Comparing the different states of noise detection: the point-cloud
(a) is a debugging visualization of the raw depth values. point-
cloud (b) is the remaining mask after the outlier detection based
on depth data. The refinement (c) is realized by the infrared
data.
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5.3.2 Detecting fundamental features of the hand

The main goal of the upcoming subsection is to identify the data
representing our fingers. This is a fundamental step in order to
detect the interaction between the thumb and the inputspace, which
is spanned by the fingers. We present a generic fragmentation of our
hand as illustrated in Figure 37.

The Finger as the 

Inputspace 

The Palm 

Partition Wall 

Figure 37: Detecting the inputspace: The Finger are separated from the
palm by a partition Wall

The pixels of our finger represent a coherent group of entries in
our mask. This essential precondition reduces the complexity of our
task in a significant manner. We need to identify the location and the
size of the area representing our finger, by detecting corresponding
features within our hand. The location of the area representing our
finger can be determined by a precise calculation of the orientation
of our hand. The size of the area is evaluated by defining geometrical
dimension markers, simulating a virtual ruler in three dimensional
space.

The fundamental steps in order to separate the fingers from the
hand are illustrated in 38. We start by determining a centric region
along the length of the hand’s mask (a). This procedure is used in
order to realize the definition of the area, that our dimension mark-
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a 

b 

c 

Figure 38: Overview of feature detection: our solution starts with a centric
aligned region within our hand (a). We define dimension mark-
ers (b) simulating a virtual ruler, in order to separate the fingers
from the hand (c).

ers are supposed to lay in. The dimension markers define "anchors"
within our "wobbly" point-cloud, identifying fixed points. We imple-
mented the detection of 20 markers (b), which are homogeneously
distributed and centrally arranged. By the use of the dimension
markers, we are able to define a partition wall and isolate the region
within our mask representing the fingers (c).

The Centric Aligned Region

We need to correct the hand’s orientation which is calculated in
prior components, in order to determine a centric aligned region.
We defined the desired corrected orientation as a vector spanned
from the spatial moment to the position of the longest finger in two
dimensional space. Hence we need to investigate the area the fingers
are supposed to lay in. We reuse the concept of the virtual viewport in
order to determine the current region of interest. The corresponding
implementation is illustrated in Figure 39. By iterating through the
pixels within this region of interest, we are able to determine the
location (a), which is the farthermost away from the spatial moment
(b). The vector stretched from the spatial moment to the detected
position of the fingertip, represents our corrected orientation (c) in
two-dimensional space .

In order to define the desired centric aligned region we imple-
mented an additional virtual viewport as illustrated in Figure 40.
This viewport is mounted to the longest fingertip and points into the
opposite direction of the corrected orientation. Our investigations
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a b c 

Figure 39: The corrected orientation: is represented by a Vector (c), spanned
from the spatial moment (b) to the longest fingertip (a). This
Fingertip has to be within the virtual field of view and the
farthermost away (a) from the spatial moment.

found a field of view of 15 degree as convenient in order to cover an
area the dimension markers are supposed to be placed.

Virtual  
Field of View of 
inverted Orientation 

Longest 
Fingertip 

Figure 40: The centric aligned region

Identification of Dimension Markers

The dimension markers operate as a twenty cm ruler, which is cen-
trally aligned along our hand lengthwise. In order to locate those
markers and calculate their position within our physical environ-
ment, we need to make use of the three-dimensional data of our
mask. The starting point marker is detected as the fingertip that
is the farthermost away from the spatial moment within our two
dimensional mask. We calculate the three-dimensional local mean of
this fingertip in order to mount our ruler to the hand. The dimension
markers need to be placed roughly equidistantly to each other, in
order to simulate a virtual ruler. We found 1 cm as an appropriate
unit in length, each marker has to be in distance to its predecessor.
Hence each marker’s index reaching from 0 to 20, indicates its three-
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dimensional distance to the fingertip, as a multiple of 1 cm. In order
to detect the position of each marker, we iterate through the pixels
which are within the centric aligned region and analyse the corre-
sponding three dimensional data. The resulting feature construct is
illustrated in Figure 41.

Partition Marker 

0 
2 1 

Figure 41: Dimension markers placed within the centric aligned region:
Based upon three dimensional coordinates, we fixed each marker
of our virtual ruler within the centric aligned Region

Isolating the Fingers

The detection of dimension markers enables the isolation of the set
of pixels representing the user’s fingers as illustrated in Figure 42.
We use a two-dimensional vector as a partition wall, separating the
relevant set of pixels. This vector is orthogonal in reference to our
corrected orientation and need to be fixed to one of the detected
dimension markers in two dimensional space. The marker that is
appropriate as a position vector, is determined by the length of
the users finger. The average length of the user’s finger has been
detected within the component which monitors the initialization
gesture, described in Section 5.1.2. This information is reused in
the current step of our procedure. Rounding up the length of the
finger to integer identifies the corresponding index of the desired
dimension marker. If the average length of the finger is between 6

and 7 centimetre, the partition wall is fixed to the 7th dimension
marker as illustrated.
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Corresponding  
Debug Image in OpenGL 

0 
2 3 4 

5 
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7 

Partition Wall 
attached to  
7th Marker 

Figure 42: Isolating the finger: The Finger are separated from the palm by
a partition wall attached to the 7th dimension marker.
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5.3.3 Analysing the hand’s surfaces

The following subsection presents our solution to identify the three
dimensional orientation of our hand as illustrated in Figure 43

3D Model of the 

Surface 

Debug Output 

of Implementation 

Figure 43: The finger as an input surface: We implemented a plane detection
algorithm analysing the hand’s posture.

The surface detection algorithm is based upon the point cloud rep-
resenting the user’s hand. This point cloud strongly deviates within
three dimensional space. In order to span the desired plane in three
dimensional space, our algorithm needs to identify the two vectors
representing the direction the point-cloud deviates the strongest. We
propose principal component analysis, calculating three eigenvalues
of three eigenvectors, in order to approximate the hands plane within
the point-cloud. Eigenvectors describe the square sum of the point’s
deviations along the corresponding axis. Hence the eigenvector con-
taining the smallest eigenvalue defines the best-fitted plane’s normal.

Since our point-cloud doesn’t only deviate along the width and
length of our hand, but also because of noise, skin folds and the
shape of our finger, we need to investigate the set of pixels that are
useful for the PCA-algorithm. Of course we use the region repre-
senting our finger, since it defines the user’s input space. Further
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we need to investigate additional areas that could approximately
add to the stability of the resulting approximation. We propose the
incorporation of the data representing a subset of the palm, since it
contains equivalent orientation compared to the finger, as long as
the user doesn’t bend his hand in a significant manner. The thumb
is supposed to represent an outlier in relation to our desired plane.
Especially the muscles at the origin of the thumb lift themselves up,
as the thumb operates upon the fingers. However we cant isolate the
thumb completely yet, since we didn’t detected its region by then.
Compared with the hand, the wrist is roughly tube shaped and don’t
necessary represent the finger’s orientation. Hence it is not advisable
to incorporate the wrist’s pixel or the rooting muscles of the thumb
in order to approximate the hand’s plane. Our investigations found
the sum of pixels representing the fingers and roughly the half of
the palm relevant for PCA. Therefore we implemented a partition
wall within the mask of our hand, in order to isolate the interesting
pixel from the useless. This vector needs to be orthogonal to the
orientation and fixed to a specific dimension marker. Our solution is
illustrated in Figure 44.

Finger 
Palm 

Figure 44: The reduced regions of interest for PCA: The finger (a) and a
fragment of the palm (b) is applicable for PCA and isolated from
the unneeded regions.

We propose to multiply the average finger length by 1.5, to detect
the most suitable marker the partition wall is fixed to. The mean of
the relevant pixels in three dimensional space, is used in order to
define the position vector the plane is mounted to.
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5.3.4 Detecting the Thumb

The following section describes our solution to separate the thumb
from the hand. Figure 45 illustrate the relation between the two
components representing the thumb (red pixel) and the hand (blue
pixel). The thumb is successfully isolated within the image, even if
the is held in different postures.

Red Pixel identify 

Thumb 

Figure 45: The thumb isolated from the hand: Red pixels represent the
thumb within a blue point-cloud illustrating the hand.

The subset of pixels representing the thumb and the subset of
pixels representing our inputspace merged together to a global set,
that was used in order to approximate the surface of the finger. As
the component of the users thumb demand way less pixel then the
component of the inputspace, we can assume the plane to be more
sensitive to the orientation of our finger. Hence the thumb’s position
has a relatively small effect on the result of the PCA and becomes a
statistical outlier in reference to the approximated plane.

The Figure 46 illustrates the relation between the posture of the
hand’s surface and individual pixels in three dimensional space.
We calculated the standard deviation of the distance of all pixels in
relation to the plane. Grey coloured pixel represent measurements
within standard deviation to the plane. The color red refers to indi-
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The Posture The Outlier 

Figure 46: Detecting the pixel representing the thumb: The grayscale image
displays the posture of our hand. Each pixel’s color within
the corresponding point-cloud refer to its relative distance to
the approximated plane. Red coloured pixels indicate that the
individual measurement is above standard deviation in distance
to the plane.

vidual pixel, which are farther than the standard deviation. Adjacent
areas of red coloured pixels, indicate potential regions representing
the thumb. However, there are multiple regions of pixels that are be-
yond standard deviation in distance to the plane. Hence it is crucial
to separate the component that represents our thumb from adjoining
areas containing similar effects.

In order to separate the region that represents the thumb, we need
to check each regions logical validity based on prior assumptions.
Therefore we map the image, containing the data of the distance
of each pixel in respect to the plane, to a two-dimensional image
as illustrated in Figure 47. This mapping enables the possibility to
reuse OpenCV’s functionalities, in order to analyse the features of
connected areas of interest.

Black Pixel represent 
Outlier 

White Pixel belong to 
Surface of the Hand 

Figure 47: The Distance to Plane Image: Each pixel’s greyscale value represent
its distance to the approximated hand’s surface. Dark pixel
refer to a relatively high distance and indicate potential regions
representing the thumb.
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Our investigations found the following feature definition, in order
to detect the thumb. The region of our thumb is rarely interrupter
by significant skin folds and reaches from the hand above the in-
putspace. Therefore the component representing the thumb has to
obtain the largest area, of all regions which overlap the region of the
inputspace and the rest of the hand. The corresponding procedure
is illustrated in Figure 48. The image (a) is a model of all potential
regions of interest (red). We reused the concept of the partition wall
(b), described in section sub:Detection of hand and thumb interac-
tion:Detecting the features of the hand in order to fragment the hand
from the inputspace. The thumb (c) is detected as the biggest area
which lays within both fragments.

(a) Regions of Interest (b) The Features (c) The Thumb 

Figure 48: The regions of interest: The hand mask (blue) in reference to
potential areas representing the thumb (green).

The following Figure 49 illustrate the greyscale image of different
hand postures and their corresponding point-clouds. Within the
point-clouds, blue pixels represent the area we detected as the thumb.
The images (a) to (c) display the hand held at different angles along
the roll axis. The image (d) displays the hand as the fingers are
crunched into the direction of the camera. Even under this marginal
condition our algorithm is able to detect the region representing the
thumb.
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a b c d 

Figure 49: The thumb detection: The greyscale images illustrate different
hand poses. The corresponding point-cloud below represent
their visualization in OpenGl. The blue colored pixels illustrate
the detected thumb region.
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Detecting the Tip of the Thumb

The following Section presents our algorithms in order to detect the
tip of the thumb. The debug output images in Figure 50 illustrate
the result of our detection.

Blue Sphere identify 

Thumb Tip 

Figure 50: Detecting the thumb tip

In order to detect the tip of the thumb we need to proceed by
creating a dynamic skeleton of our thumb. This skeleton correlates
to the topological features of our component representing the thumb
The main topological features of this component are listed below
and have to be identified in the corresponding order.

• The root of the thumb (a). This point corresponds to the actual
location where the thumb roots out of the hand.

• The middle point of the thumb (b), roughly located around its
knuckle.

• The tip of the thumb (c).

Our solution in order to detect the tip of the thumb is illustrated
in Figure 51. The point (a) is the farthermost away from the longest
fingertip (b) and identified as the root of the thumb. We described
our solution in order to evaluate the longest fingertip in Section
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5.3.2. We continue by calculating the spatial moment (c) of the thumb
component. This feature will be identified as the middle point of
the thumb. We use the detected root point and the middle point
in order to span a vector between the two. This vector is used, so
we can fix a virtual field of view (d) to the spatial moment of the
thumb, identifying the region where thumb tip is expected to be.
Iterating through all the pixels that represent the thumb and are
within the virtual viewport, enable the possibility to detect the pixel
which is the farthermost in respect to the knuckle point. This position
represents the tip of the users thumb (e).

a 

b 

c 

d 

e 

Figure 51: The procedure of thumb tip detection
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5.3.5 The thumb in reference to the hand

The following subsections present our procedures in order to enable
a touch pad analogy, as the user’s thumb navigates across the hand.
We detect the thumb tip’s position in relation to the hand’s surface
as illustrated in the debug output collage of Figure 52.

Thumb in 

Reference System 

Figure 52: The model of the hand. A plane is approximated within the
Hand (green). Three geometrical axis are fixed to the origin of a
coordinatesystem

Our solution was initially intended to be based exclusively on the
three-dimensional features of our hand. The orientation of the plane
of our hand’s surface, the origin of our reference system and the
three-dimensional position of our thumb tip must be used in order
to create the desired touchpad analogy in three-dimensional space.
Unfortunately this approach is limited due to the capability of con-
temporary depth cameras. Measurement noise and low resolution
are accountable for the restrictions of our initial concept and moti-
vated us to investigate alternative approaches. Hence we propose an
interplay of two dimensional and three dimensional data in order to
detect the interaction between thumb and hand. Our research found
the following solution of feature detection as the most promising:
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• The 2D Position: The position of the tip of the thumb in relation
to the hand is determined by the use of the two dimensional
mask of the hand as illustrated in Figure 53. Since we expect
the user to hold the hand roughly orthogonal to the chest, we
are able to determine the position and dimension of the hand’s
surface. This enables the evaluation of the thumb’s relative
position to the hand.

• The 3D Tap: We determine the Hesse normal form of the hand’s
plane, in order to calculate the distance of the thumb tip in
reference to the plane. If the resulting value is less then 1 cm,
our system registers the thumb to be in contact with the hand.

X-Axis of 
Surface 

Y-Axis of 
Surface 

The Tip of the Thumb  
in Coordinatesystem 

Figure 53: The two dimensional reference system.

Our model illustrated in Figure 53, led quickly to promising and
smooth results. The only limitation arise by the trapezoid shape of
the user’s hand. The finger’s inputspace can’t be mapped to a rect-
angle, especially since it strongly differ from user to user. Hence it is
necessary to implement a generic configuration of the inputspace,
which adapts to the user’s hand’s shape.

Our solution in order to reconfigure the inputspace is illustrated in
Figure 54. The origin of the desired relation system is defined by the
dimension marker, which corresponds to the finger’s average length.
We described the relevant procedures in section 5.3.2. We use the
concept of virtual field of views, in order to continuously reconfigure
the dimensions of the user’s inputspace. The maximum of the local
reachable space along the x-axis is evaluated by fixing a virtual
viewport to the thumb tip (a). This viewport points into the direction
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of the hand’s orientation and covers the corresponding pixels at the
contour of the hand. We use all of those pixels in order to calculate
their two-dimensional mean (b). The distance between the mean and
the y-axis (c) identifies the maximum of local reachable space (d).
The size of that space in reference to the distance (e), between the
mean and the tip of the thumb, identifies the relative position of the
thumb tip.

b a b c 

d 

e 

e f 

g 

h 

j 

i 

Figure 54: Recalibration of the axis. The tip of the thumb (a) in reference to
the range (d) between the fingertips (b) and the y-axis (c). The
distance (e) between the fingertip and the tip of the thumb in
respect to the range defines the relative position of the Thumb.

Our solution, in order to recalibrate the length of the y-axis, is
analogue to the calibration along the x-axis. We use two viewports,
mounted to the thumb tip (f). We calculate the corresponding means
(h and g). The distance between the two define the local maximum
reachable space (j) along the y-axis. The distance (i) between the tip of
the thumb and the lower mean (g) in relation to the local maximum,
represents the thumb’s relative position. We used the lower mean,
because its contour is naturally less frequently manipulated by the
thumb’s pixels.

The Figure 55 displays our successful recalibration of a two-
dimensional coordinate system as the user’s thumb navigates across
the hand’s surface.
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Figure 55: Result of recalibration of a two-dimensional coordinate system
displayed by debugging-pictures and their corresponding hand-
poses
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5.3.6 The thumb in reference to individual fingers

Our investigations found effects, which offer the possibility to detect
the thumb tapping individual fingertips as illustrated in Figure 56.

Figure 56: The Thumb tapping a Fingertip: The grayscale image of our
hand illustrates the thumb tip tapping the middle finger. The
corresponding debug output image displays the second item
from the top to be selected (red), which refers to the middle
finger.

If the user holds the fingers slightly bent towards the camera as
illustrated in Figure 57 (a), then shadows appear around the bended
finger joints. Those shadows are caused by folds of the skin, which
don’t reflect enough infrared light, and separate the finger from the
hand within our image. Figure 57 (a) illustrated the fingertips, which
are clearly isolated from the rest of the hand. Unfortunately the
finger’s pixels connect and disconnect from each other, depending
on the hand’s pose in reference to the camera. Because of that, it
is not possible to identify individual fingertips and their position
within our image. Instead we use this mask in order to determine the
sum of pixels representing the fingertips as one single component
and reconstruct the position of each tip within this region.

In order to approximate each fingertip’s position we need to detect
the features illustrated in Figure 58. We define the components
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a b 

Figure 57: The Effect as the hand is bend: Shadows clearly isolate the
fingertips from the hand as the finger are bend towards the
camera.

representing the fingertips as one single component (a). The spatial
moment and the orthogonal of the hand’s orientation is used in order
to span a vector (b), representing the approximated row the fingertips
are aligned to. This vector enables the possibility to measure the
width spanned by the users fingertips (c). By segmenting the area in
four regions, we are able to approximate the four fingertips along
the vector.

Spatial Moment 
Thumb 

Tip 

Point of 
Intersection 

Closest 
Finger to 
Intersection 

a 

b 
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d 

Figure 58: Reconstruction of the Fingertips: We identify the pixels repre-
senting the fingertips as a single component (a) and calculate
its spatial moment (b). The orthogonal of the hand’s orientation
fixed to the spatial moment offers the possibility to measure the
width of the fingertips and identify the approximated position
of each finger.

The Figure 58 illustrate our solution to detect the thumb tip’s
relative position in relation to the fingertips. We reconstruct the
direction of the thumb’s orientation by the use of the vector, which
is spanned from the spatial moment of the thumb to the tip of
the thumb. This vector intersects with the vector representing the
row of the aligned fingertips. The Fingertip which is the closest
to this intersection represents the item the user desires to tap. The
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discrete tap is registered as soon as the thumb tip’s distance to the
intersection point is below a lower boundary.

Spatial Moment 
Thumb 

Tip 

Point of 
Intersection 

Closest 
Finger to 
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Figure 59: Features of thumb and fingertips: the closest fingertip to the
thumb is registered.
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6
A P P L I C AT I O N S C O N T R O L L E D B Y I M A G I N A RY
W I D G E T S

The following chapter presents our solutions, to translate the de-
tected features of the gesturing hand into imaginary widgets. The
resulting continuous and discrete values control the application’s
input as illustrated in Figure 60. We implemented audio and graphic
applications in order to demonstrate multiple fields our system could
become advantageous. Our applications are written in Java based
Processing. We describe the imaginary widgets which were built on
top of the pinching gesture in section 6.1. The widgets of thumb on
hand interaction are illustrated in section 6.2.

Section 4.1  

X,Y,  

 Item, 

Touch 

Applications 

Section 4.2  

Imaginary Widgets  

X,Y,  

Angle, 

Touch 

Applications 

Imaginary Widgets  

Figure 60: Overview of application and widget architecture
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6.1 imaginary widgets based on pinch gestures

The following section presents our implementation of imaginary
widgets based on pinching gestures. The feature detection of the
pinch, which is presented in section 5.2.2, provide the essential
data to construct the widgets. We implemented an audio player in
order to investigate the complexity of our input technology. This
application offers the possibility to switch between different songs by
discrete input and adjust the volume by continuous input. Hence our
pinching widget realizes two different types of imaginary widgets.
The imaginary dial returns its rotational angle. This continuous
value determines the level of the volume. The imaginary item bar
returns the index of an option that is currently selected and controls
the playlist. Additionally the widget component verifies if the user
performed a double-tap. If this condition becomes true the user is
enabled to control the playlist. If the user performs a single-tap, the
continuous data of the dial is parsed to the Volume control of the
audioplayer.

Section 4.1.1  

Imaginary 

Widgets  
Angle 

Volume of Application 

Item 

Playlist of Application 

Single-Tap Double-Tap 

Section 4.1.2  

Figure 61: The architecture of the imaginary pinching widget: Continuous
and discrete values are identified and forwarded to the corre-
sponding control assembly of the audioplayer. Which assembly
is supplied with data, depends on whether the user performing
a double-tap or not.
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The check procedure of the double-tap is realized, by simply
checking the state of the pinch over time. Discrete data is provided
by the procedures described in section 6.1.2. The functions in order to
determine the continuous input values are discussed in the following
section 6.1.2.

6.1.1 Continuous Input

Our solution in order to detect the continuous values of the pinching
widget is illustrated by the debug output collage of Figure 62. The
volume is adjustable by an imaginary dial which turns as the user’s
index finger slides along the thumb.

Figure 62: Controlling the volume of the audioplayer: The level of the
volume is adjusted by sliding the tip of the index finger along
the thumb

The corresponding calculation in order to detect this continuous
value is illustrated in Figure 63.

• We span a vector (a) from the spatial moment of the component
of the hand to the spatial moment of the pinch component.

• We span a second vector (b) from the spatial moment of the
pinch component (c) to the point of contact between thumb and
index finger.
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Vector (a) 

Vector (b) 

Angle of  
(a) and (b) 

Figure 63: The calculation of the imaginary dial: The angle between the
two vector’s (a and b) define the dial’s rotation

• We calculate the angle between the two vectors (a and b).

We use the value of the resulting angle in order to control the
volume. Our solution offers multiple advantages. First of all, the
spatial moments are very robust to noisy measurements and frag-
ments appearing within our image matrix. The more our algorithm
is based upon robust features, the more precise is the result of our
solution. Another even more interesting advantage of this concept is
illustrated in Figure 64. A dial between the user’s thumb and index
finger, can be rotated in one fluid motion as the index finger slides
along the thumb (a). As the index finger reaches the tip of the thumb
(b), the user can continue to slide with the thumb tip along the index
finger (c). This motion still causes the rotational angle to grow and
increases the desired value. This advantage expands the range of the
inputspace, in contrast to only using the thumb.

c 

 
 

a b 

Figure 64: The imaginary dial’s rotation: The rotation is continuous in
one direction as the user performs the illustrated sequence of
gestures from left to right.
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6.1.2 Discrete Input

This subsection illustrates our solution to extract discrete input, as
the user performs the pinching gesture. Figure 65 presents a collage
of debug images of our imaginary item bar implementation. This
widget is called by double tapping and holding the tip of the index
finger on top of the thumb. The user now continues to slide his index
finger along the thumb and imagines different items to be placed on
top of it. In order to select one, the user simply releases the contact
between thumb and index finger close to the position he imagines it
to be placed. The active item that was the closest to the release point
of the two fingers, will call the corresponding functions within the
application.

Figure 65: Playlist of audioplayer controlled by imaginary items: An item
bar is fixed to the thumb, representing different options in order
to play or skip between different songs.

Our concept to determine the position of the individual items is
illustrated in Figure 66. As soon as the user double taps, we calculate
the vector and distance between the point of pinch and the point
where the thumb roots out of the hand (a).

We proceed by attaching different items the user can select from
(b). Since the resolution of our camera and the available input space
on top of our thumb is relatively small, we decided to stick to a
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Range of Input 

Item 2 Item 1 Item 3 a 

b 

Figure 66: The imaginary dial’s rotation: The rotation is continuous in
one direction as the user performs the illustrated sequence of
gestures from left to right.

minimum of imaginary items to be placed along our thumb. One of
those items needs to control the pause and play button. Two more
items need to offer the possibility to select the next or previous track
within our play list. Therefore we fragment the inputspace on top
of the thumb down to three regions, representing three imaginary
items. Unfortunately it is not possible to use the hole inputspace on
top of the thumb, since the user could possibly close the pinching
hole as soon as he tries to reach the root of the thumb with his index
finger. Hence we propose to only use 75 percent of the inputspace.
We perform this kind of calibration, which is responsible for the
distribution of the item’s position , only once the double tap is
performed. This initial calculation and its results is necessary in
order to measure the available input space on top of our thumb.
Therefore it is recommended that the user always double taps the
thumb as close to its tip as possible. This stretches the available input
space to a maximum, thus increases the quality of fragmentation.
Once the user revealed the length of his thumb by his initial double
tap, the discrete items are fixed on top of his thumb in reference to
the static position where the thumb roots out of the hand.
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6.2 imaginary widgets based on thumb and hand inter-
action

This section presents our solution, concerning the translation of
thumb and hand interaction into corresponding imaginary widgets.
The following Figure 67 illustrates a debug output collage of the
user’s hand interacting with a visual application

Figure 67: Thumb on hand widget: The user pushes different imaginary
buttons on his hand, which cause a little hairy ball to change his
haircut.

We identify the individual Gestures by the use of the features, we
detected in Section 5.3. We are able to determine:

• Continuous values as the thumb navigates across the fingers.
We detect its position based on a two dimensional coordinate
system mapped to our hand mask.

• Discrete values as the thumb taps the fingers. We continu-
ously calculate the distance of the thumb in reference to the
hand. Since the stability of this value suffers from noisy depth
measurements, we need to smooth our data. An exponentially
weighted moving average across the latest 7 frames offers the
desired reliability and minimizes the latency within an appro-
priate amount. Our system registers a touch event, as soon as
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the result of the smoothing algorithm calculates an average
below 1 cm.

• Discrete values as the user taps individual Fingers.

The following subsections describe the implementation of indi-
vidual imaginary widgets and their corresponding applications. We
created graphical illustrations, in order to demonstrate the efficiency
of our interactions technologies visually.
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6.2.1 Continuous Values

This subsection illustrates the efficiency of our interaction technology
concerning continuous thumb on hand interaction. The continuous
values of the imaginary thumb on hand widgets are used in order to
control different floating objects on the screen.

The Slider

We implemented different imaginary sliders, mapping the data of
the feature detection to visual applications. Figure 68 illustrates the
famous video game Pong, which is controlled by the user’s thumb
tip sliding across the finger. Hence a small paddle, which is supposed
to hit a white ball, corresponds to the y-coordinate of the thumb
tip in reference to the user’s hand. The images illustrate different
positions of the thumb and the paddle, which is associated to it.

Figure 68: Pong controlled by imaginary slider: A small Paddle is controlled
by the user’s thumb tip, moving across the hand.

We designed an additional slider, in order to demonstrate the
ability to interact with the thumb as it moves along the finger. Our
solution is illustrated in Figure 69. The game consists of a red ball,
that bounces on top of a virtual street. The game is lost if the ball
falls into a black hole. The horizontal position of the ball refers to
the x-coordinate of the thumb in reference to the hand.

The Touchpad

We designed a motion flow visualization in order to demonstrate the
imaginary touchpad. The position of our thumb in reference to the
hand is related to the controlled pointer within the drawing frame.

77



6 applications controlled by imaginary widgets

Figure 69: Ball game controlled by imaginary slider: A red ball corresponds
to the thumb tip sliding along the finger.

This concept is illustrated in Figure 70. A continuous line illustrates
the temporary motion of the thumb as it moves across the finger’s
surface. A red cross is placed at the actual position, indicating the
contact between the thumb tip and the finger.

Figure 70: Motion flow across imaginary touchpad: The line illustrates the
movement of the thumb tip. A red cross indicate the touch event.
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6.2.2 Discret Values

This subsection illustrates the efficiency of our interaction technology
concerning discrete thumb on hand interaction. The discrete values
of the imaginary thumb on hand widgets are used in order to select
objects on the screen.

The Dial

The imaginary discrete dial illustrated in Figure 71 , enable the possi-
bility to select from different items, which are rotationally organized.
The user iterates through those items by performing a circular mo-
tion with his thumb tip across the finger’s surface. A circular sector
which is coloured in red, illustrate a touched item. A turquoise arc
represents an item the user’s thumb tip hovers over. This imaginary
Widget is also implemented as a continuous widget. A white trian-
gle is illustrated within the debug images, pointing at the relative
position of the thumb tip. The rotation of this object, represents its
corresponding continuous value.

Figure 71: Discrete dial controlled by thumb on hand interaction: The user’s
thumb tip performs a circular motion on top of his hand. Red
arcs represent touched items and turquoise arcs illustrated the
hovered ones.

The Buttons

We implemented imaginary buttons the user imagines to be placed
across his fingers as illustrated in Figure 72. Hence we fragmented
the available inputspace in eight squares of equal size. Because of
low resolution and the corresponding inaccuracy we decided to
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avoid the implementation of more buttons for our prototype. Red
coloured buttons represent a selected item as the user touches the
corresponding area on top of his hand. A purple coloured button
illustrates a hovered item.

Figure 72: Discrete buttons controlled by thumb on hand interaction: The
user is able to select (red) from different items by the use of
buttons he imagines to be placed across his hand. As long as the
user’s thumb hovers across the thumb, the corresponding item
(purple) is registered as not selected.

The Fingertips

We implemented imaginary buttons, which are placed on top of the
users finger. The features detected in 5.3.6 determine which finger is
actually tapped. A visual game in which different discrete signals
determine the haircut of a hairy ball and its interactions is illustrated
in Figure 73. Each haircut is assigned to an individual finger.

80



6 applications controlled by imaginary widgets

Figure 73: Haircut of hairy ball controlled by fingertips: By tapping an
individual fingertip the corresponding haircut appears.
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7
D E S I G N D E C I S I O N S

This chapter discusses different design decisions, which we had to
run through in order to develop our system. We explore the prop-
erties of gestural interaction techniques in Section 7.1 and suggest
single handed gestures which offer tactile feedback as appropriate
for quick interactions in mobile scenarios. Optical gesture detection
technologies for mobile scenarios, allow the user to interact with
empty hands and quickly return to their primary task at all time.
The Section 7.2 presents our experience and research in different
optical solutions for the detection of hand and thumb interaction.
Depth Cameras offer encouraging results and possibilities in order to
detect objects and gestures. However there are still some limitations.
We illustrate the general course of implementation and the trade off
between the physical restrictions of the hardware and the minimal
demands of our interaction technologies in Section 7.3.
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7.1 gestural interaction

The input concept presented in this work addresses different restric-
tions and interaction drawbacks of common mobile devices. Our
goal is to reduce the time frame and the intensity of interaction,
which mobile devices command. We propose gestures as appropriate
for mobile scenarios in order to implement the desired reduction.
The implementation of gestures, as an input technology, enable the
possibility to leave the user’s hand empty at all time. Hence the
user is able to quickly access and launch the device, perform single
purpose gestures and return to his primary task.

In order to create a gesture input technology it is necessary to
define the gestures and functionalities, which are suitable for the
individual needs of the target system. Optical gesture detection for
mobile scenarios demand two major design decisions. We need to
narrow down the subset of gestures that is appropriate in order to
control individual widgets and we need to develop mechanisms
in order to avoid unwanted activation. The following subsections
discusses our design decisions to address both needs.

The Type of Gestures

Since our input technologies address different aspects of mobile
scenarios, we need to identify a reasonable set of gestures which is
appropriate for use in public. First of all we want to exclude bimanual
interaction from further investigations, since we want to offer the user
of our system to continuously free at least one hand from interaction.
Single hand gestures enable the user to carry a coffee or hold a railing
in the bus as they interact with the device with the other hand. We
investigated two types of single hand gestures for our purpose.
The group of "hand in respect to body gestures" and the group of
"thumb in respect to hand gestures". Interactions which are defined
by the hand’s relative position/orientation to the body are often
used for pointing and motion gestures. Those gestures are commonly
detected by calculating the hand or forearm’s position in respect to a

83



7 design decisions

predefined reference point. In our case the corresponding detection
system could be realized by the implementation of a body centred
coordinate-system, which refers to the position of the gesturing
hand. However there are multiple drawbacks for implementing such
a gesture-set.

• The Reference System: A body centred reference system is not
appropriate for mobile scenarios. The precise detection of the
interacting object and the object which represents the origin of
the relevant reference system is equally crucial. A moving body,
carrying a camerasystem, is not necessarily synchronized with
the sought-after motion of the hand’s gesture.

• Discrete Data: The definition of continues input is often repre-
sented in computer vision solutions for gesture detection. On
the other hand, extracting discrete data from a continuously
moving hand, which is captured by a moving camera system
is a crucial task. This condition is intensified by the fact that
every gesture which is performed in order to initiate a discrete
signal, might manipulate the corresponding continuous value.
For example a touchscreen analogy in mid air is complicated,
since every touch the user performs causes his hand to change
its relative position. Therefore a false detection of the desired
touching point is plausible.

• Social acceptability: Causing public attention and occupying a
lot of interaction space with big movements of the hand and
forearm, is not compellingly appropriate across all cultural
barriers.

• Feedback: There is no sensing feedback, except the user watch-
ing his hand or feeling the muscles. A precise eyes free use of
the gesture is very hard to perform.

We propose thumb and finger in respect to hand gestures. This
concept is suitable for mobile scenarios as it positively addresses the
drawbacks of the pointing and motion gestures:
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• The Reference System: is determined by the hand itself. Hence
the pointer, represented by the thumb, and its reference point
can be determined within the same image frame.

• Discrete Data: The hand and finger represent a relatively static
object in space, as the thumb operates on top of them. Hence
discrete data is detectable by measuring if the thumb is in
contact with the hand or an individual finger.

• Social acceptability: The imaginary input surface spanned across
our finger remains a private area, because it is small and mov-
able.

• Feedback: Humans are able to experience double tactile feed-
back as the thumb moves across the hand, since the thumb
and hand deliver precise feedback about where the contact has
taken place. Hence users are able to interact with imaginary
widgets eyes free and perform precise input.

Avoidance of Inadvertent Activation

Random objects continuously appear within the chest mounted cam-
era’s view as we are on the go. Pedestrians passing by, objects of the
surrounding infrastructure or the user’s hands interacting with the
environment. Those objects could possibly simulate the features of a
hand and overcome any optical hand detection algorithm. Therefore
it is necessary to develop a concept to avoid inadvertent activation.
The following section describes the concept of an activation ges-
ture the user’s hand has to perform in order to proceed to further
interaction. Such a Gesture needs to imply the following features.

• Security: The gesture should be unlikely to occur randomly. Dif-
ferent objects and artefacts of noise shouldn’t be able to evoke
optical effects, which simulate the activation gesture by accident.
Therefore the gesture needs to reveal unique features of the
hand in order to verify that it is a human hand. Additionally the
device must not be activated by the user’s everyday movements.
Hence an appropriate gesture design and the corresponding
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implementation needs to fulfil the following contradiction. On
the one hand, the gesture needs to be as "naturally" as possible
to the user and on the other side it needs to be quite unlikely
to be performed in everyday situations.

• Usability: The activation gesture needs to be easy, comfortable
and fast to perform.

• Social Acceptability: The gesture needs to be applicable across
cultural barriers. This is especially needed since our concept
is designed for mobile scenarios. Hence it is appropriate to
develop a gesture that is small and must not provoke public
attention or misinterpretations.

• Memorability: A sequence of movements which is used as an ac-
tivation gesture, must not contain a complicated choreography.
In order to push the memorability of our gesture, we need to
develop a short redundant sequence of simple movements and
reuse it for related functionalities. Therefore we propose the
deactivation gesture to be the same as the activation gesture.

We propose a sequence of simple hand signs as illustrated in
Figure 74 as adequate in order to fulfil the above mentioned de-
mands for an activation gesture. Gestural interaction is unlocked
once the conditions of each step of the sequence became fulfilled in
the corresponding order and timing.

a b c 

Figure 74: The sequence of gestures to initialize the system: a hand mask
must be within our image(a). An open hand with spread fin-
gers must be held for a specific timespan. Further the hand is
expected to return into the position it was before (c).
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7.2 optical detection hardware

In order to detect and analyse the gestures performed by the user,
we investigated two different camera systems, capturing the user’s
hand. A Time-Of-Flight camera and an infrared camera system.
This section discusses the advantages and disadvantages of the two
different camera devices.

Infrared Camera

Inspired by the gesture pendant [7], we priorly started our inves-
tigations by the use of an infrared camera capturing an infrared
illuminated gesturing hand. We found this solution to be limited
due to the following reasons:

• The hand containing a relatively high albedo and being the
closest object to the camera is expected to be the brightest object
within the captured image. The hand’s mask is isolated from the
background by thresholding. The resulting mask contains only
binary information and doesn’t offer any additional information
about the hand’ pose and the positions of individual fingers.
Therefore gestures which involve overlapping joints of our
hand and the presented thumb on hand interactions of our
input technology, are tremendously difficult to detect.

• The hole formed by the index finger and thumb, as the user
performs the pinching gesture, is only visible to the camera if
the hand is held in a specific angle. The user has to be aware
of the camera’s view at all times. Hence this detection system
demands an inappropriate amount of attention for successful
interaction.

• Algorithms to detect objects by the use of infrared cameras
suffer from its ability to work in direct sunlight. The Sun floods
every observed scene in a tremendous amount. Hence cap-
tured images of infrared cameras in direct sunlight contain no
significant information about the hand’s mask.
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Depth Camera

Depth cameras using the Time-Of-Flight technology occupy a rela-
tively new research field. The Time-Of-Flight concept represents a
group of different technologies to determine the distance to an object
by measuring the time the light requires to travel to the desired
object. This concept is closely related to LIDAR scanners. Time-Of-
Flight used for depth camera’s enhance this solution by measuring
multiple pixels within an image array. Hence it is possible to capture
and analyse depth information of an observed field of view, even in
real time. We strongly motivate the use of Time-of-Flight Technology
for the detection of gestural input in mobile scenarios, because of
the following features:

• Depth cameras capture detailed depth information of the ob-
served area. This enables the reconstruction of 3D models repre-
senting the user’s hand. Depending on the depth resolution of
the capturing device, different levels of substantiation are think-
able. The resulting model can be used in order to implement
rich interactions on top of the detected features of the hand.
Further a three dimensional model of the hand, enables the
user to not being forced to hold his hand within a precise pre
defined angle in respect to the sensor. This a crucial property
of the presented system and its eyes free usage.

• Depth cameras allow to isolate the region of interest from need-
less background information very easily. The company PMD
[23] equipped their latest sensor chips with the SBI (Suppression
of Background Illumination) technology, pushing this advan-
tage even further. This solution enables a significant reduction
of noise, caused by natural light flooding the observed area.
Therefore current sensors are appropriate for mobile scenarios,
since they can be used in every lightning condition of the user’s
changing environment. (see Figure 75).

• State of the art cameras offer the possibility to capture depth
and grayscale information of the observed area simultaneously.
This property realizes the opportunity to detect even more
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precise features of the user’s gesturing hand. Skin folds and
creases are detectable depending on the camera’s resolution
and indicate advanced features of the user’s hand.

Figure 75: Reconstruction of Hand in direct sunlight: Depth cameras are
able to return the data of interest even under worst-case situa-
tions. In this case a hand is captured directly into the sun. The
corresponding debug output image displays the hand’s contour.

We found the sum of the mentioned properties of Time-Of-Flight
Cameras as appropriate for the presented system. Yet the recent
development within the research field of TOF cameras offer even
more astonishing trends. The Camera, used for our implementation
is a PMD 3.0 Camcube [23]. This camera offer the ability to measure
the depth within a resolution of 5 mm and represented the state of
the art in August 2010. Yet this resolution occupy a marginal edge
for our purpose to detect detailed information of the hand. Another
drawback of this camera system is its size, formed to bulky and
heavy to be attached to the user’s chest. Only a year later, cameras
with the following astonishing features are released.

• A 60 degree field-of-view enables the user’s hand to interact
within a bigger space in front of his body.

• A 1 mm depth resolution offers the possibility to detect indi-
vidual postures and bones of the hand.
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• USB powered cameras, being smaller then a smartphone indi-
cate mobile cameras to be available in near future.

A camera device containing all of the groundbreaking mentioned
features is the PMD CamBoard [23]. The ongoing trend within the rel-
evant fields of research, make it reasonable to assume that limitations
of today’s devices will be overcome.

90



7 design decisions

7.3 detection of hand and thumb interaction by time-
of-flight

The following chapter discusses our evaluation of tactile single
handed input and our systems capabilities to detect those hand
gestures. Our investigations priorly started by the vision to build
algorithms, which reconstruct the three-dimensional model of our
hand based upon the data of our point-cloud. This model was sup-
posed to be a dynamic skeleton, which adapts the users hand pose
as illustrated in Figure 76.

Pointcloud of 

Hand 

3D  Handmodel 

Figure 76: Model of hand skeleton reconstruction: Based upon the data of
the captured point-cloud a three-dimensional model is recon-
structed

.
Yet our investigations found this vision to be against impossible

odds, due to the physical limitations of our hardware. The data
captured by our chest mounted camera restricts the possibility of
skeleton reconstruction, based upon the following properties:

• 2 1/2 Dimensions: The depth data of the captured environment,
does not represent a full three-dimensional reconstruction of
this area. Objects which are occluded by other objects in respect
to the camera system, do not reflect infrared light back to the
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camera lens. Hence there is no data indicating the position of
those occluded objects. Additionally this constraint implicates
that there is no information about an objects size in depth.

• Quality: The average depth noise of our camera system amounts
only 0.5 cm. This amount of noise is outstanding nominal for
contemporary devices, but still substantially strong for our
purpose.

• Quantity: The captured image contains only forty-thousand
pixel. A hand placed a half meter in distance to the depth
camera occupy roughly about twenty thousand pixel within the
image. The fingers and thumb, representing the actual region
of interest, occupy only a fraction of those pixels. Additionally
a tremendous amount of pixels are not correct or simply do
not contain interesting information since hand segments are
occluded by others. Hence the usage of statistical methods in
order to improve the accuracy of the data is limited, by the lack
of valid measurement samples.

Those limitations of our data merge together to a blockade. There-
fore it is necessary to discuss the two major requirements of our
system against each other.

• How much detail in detecting the interaction is the minimum
for an efficient input concept.

• What is the maximum technically feasible of our system.

We propose an appropriate reduction of the desired features.
Rather than detecting each finger separately, we can simply para-
phrase all of our finger as a single input surface as illustrated in
Figure 77 and detect the thumbs position in reference to the cor-
responding plane. This concept enables the possibility to realize a
touchpad analogy. On that account the matching of each pixel to
an individual finger becomes needless. Instead we use statistical
methods on top of the sum of all pixels that belong to our finger, in
order to approximate their arrangement in three dimensional space.
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The Tip of the 
Thumb 

The Origin of the 
Reference-system 

The Surface of 
the Hand 

The Tip projected 
to the Surface 

Figure 77: The hand as a touchpad: The thumb operates on top of an
imaginary thumbpad fixed to the hand

In order to accomplish the desired task of feature detection, our
depth camera system offered a marginal amount of depth noise.
Hence the results of our solution revealed to much false detection
to implement imaginary widgets. Since the investigation of widgets
represent a major task, we decided to address this issue by in coop-
erating greyscale infrared measurements of the depth camera. This
concept improved the stability of our system in a significant manner.
We used the detection of shadows within the hand’s mask, indicating
invalid pixel’s, in order to create more precise outlines and depth
data of the hand. Yet this procedure is not advisable to be used
in extreme conditions of natural light flooding the observed area.
However the rapid development of today’s depth cameras prove that
this in cooperation of depth and infrared data, is no longer needed.
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C O N C L U S I O N S

8.1 summary

Temporary mobile devices demand an inappropriate amount of
the user’s attention. We presented our concept of thumb on hand
input for mobile devices in order to reduce this attention. Therefore
we introduced a chest mounted camera system, which enabled the
possibility to detect and analyse the user’s gesturing hand by the
use of computer vision. Exploring such a system our investigation
found the following contributions as interesting:

• We found depth cameras using the Time-Of-Flight principle
to be appropriate for detecting gesturing hand’s in mobile
scenarios.

• A robust preprocessor continuously analyses the observed stage
in front of the user’s body and successfully extracts the user’s
hand from unneeded background information.

• We described the detailed analyse of individual features of the
user’s hand, which expand common possibilities of detecting
gestural input by optical solutions.

• We introduced imaginary widgets, representing rich interaction
types by the use of thumb and hand interplay.

• We described sample applications, which are controlled by
imaginary widgets and demonstrate the efficiency of our solu-
tion.
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8.2 future work

There are many interesting prospects for the presented gestural input
system. We found our system to be promising and encouraging. Yet
it still suffers from drawbacks which should be investigated in future
works:

• Push the level of detail: We are confident about the efficiency
of our widgets. Still we believe that the presented system offer
even more possibilities to interact in mobile scenarios. Hence
advanced algorithms detecting even more precise features of
the hand could enable more detailed types of interactions like
twirling the thumb around individual fingers and assigning
items to different fragments within each finger.

• Investigation of a complete prototype, demonstrating the in-
teraction with the most essential functions of a smart phone
represent a very interesting task.

• User studies about the humans ability to intuitively interact
with the proposed technology. In particular it would be inter-
esting to investigate the abilities to memorize type and position
of individual widgets. Additionally we found circular motions
by the tip of the thumb to be way harder performed then linear
motions like sliders. Corresponding studies in order to evaluate
and compare the efficiency of different imaginary widgets are
appropriate.

• Feedback is a crucial task for imaginary widgets. Research
about appropriate feedback systems are interesting and much
needed in order to proceed.

Our implementation consists mainly of statistical methods, approx-
imating three dimensional orientation of the hand, combined with
conditional expressions checking for the existence of pre defined
assumptions. Those expressions need to be replaced by complex ma-
chine learning constructs using a great number of training data. The
resulting algorithms could possibly lead to the desired full skeleton
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model of the hand, given that the three dimensional data captured by
depth cameras increase their level of detail in near future. This solu-
tion is much needed and could set further foundations to investigate
the efficiency and usability of the presented system.
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